diff --git a/src/scgenerator/const.py b/src/scgenerator/const.py index c85f84a..6c6f15a 100644 --- a/src/scgenerator/const.py +++ b/src/scgenerator/const.py @@ -45,12 +45,8 @@ MANDATORY_PARAMETERS = { "length", "adapt_step_size", "tolerated_error", - "repeat", "linear_operator", "nonlinear_operator", - "soliton_length", - "nonlinear_length", - "dispersion_length", } ROOT_PARAMETERS = [ diff --git a/src/scgenerator/evaluator.py b/src/scgenerator/evaluator.py index 88aa2e0..c455101 100644 --- a/src/scgenerator/evaluator.py +++ b/src/scgenerator/evaluator.py @@ -569,7 +569,11 @@ envelope_rules = default_rules + [ Rule("gamma_op", operators.constant_quantity, ["gamma_arr"], priorities=1), Rule("gamma_op", lambda w_num, gamma: operators.constant_quantity(np.ones(w_num) * gamma)), Rule("gamma_op", lambda: operators.constant_quantity(0.0), priorities=-1), - Rule("ss_op", lambda w_c, w0: operators.constant_quantity(w_c / w0)), + Rule( + "ss_op", + lambda w_c, w0: operators.constant_quantity(w_c / w0), + conditions=dict(self_steepening=True), + ), Rule("ss_op", lambda: operators.constant_quantity(0), priorities=-1), Rule("spm_op", operators.envelope_spm, conditions=dict(spm=True)), Rule("spm_op", operators.no_op_freq, priorities=-1), @@ -579,6 +583,7 @@ envelope_rules = default_rules + [ Rule("dispersion_op", operators.constant_polynomial_dispersion), Rule("dispersion_op", operators.constant_direct_dispersion), Rule("dispersion_op", operators.direct_dispersion), + Rule("dispersion_op", lambda: operators.constant_quantity(0.0), priorities=-1), Rule("linear_operator", operators.envelope_linear_operator), Rule("conserved_quantity", operators.conserved_quantity), ] diff --git a/src/scgenerator/noise.py b/src/scgenerator/noise.py index 0878254..071d83a 100644 --- a/src/scgenerator/noise.py +++ b/src/scgenerator/noise.py @@ -232,7 +232,7 @@ class NoiseMeasurement: sample on a log-log scale rather than on a linear scale, by default False """ nf = nf or len(self.freq) - if rng is None or isinstance(rng, int): + if rng is None or isinstance(rng, (int, np.integer)): rng = np.random.default_rng(rng) freq, amp = self.sample_spectrum(nf, dt, log_mode, left=0)