original variable parameters

This commit is contained in:
Benoît Sierro
2023-10-09 11:52:20 +02:00
parent c51086353f
commit 5bf2a080e5
2 changed files with 489 additions and 0 deletions

View File

@@ -0,0 +1,425 @@
import itertools
import warnings
from dataclasses import dataclass, field
from typing import Callable, Iterator, Protocol, Sequence, TypeVar
import numpy as np
T = TypeVar("T")
def debase(num: int, base: tuple[int, ...]) -> tuple[int, ...]:
indices = []
_, *base = base
for i in range(len(base)):
ind, num = divmod(num, np.prod(base[i:]))
indices.append(ind)
indices.append(num)
return tuple(indices)
def normalize_condition(v: slice | range | int | tuple, num: int) -> tuple[int, ...]:
if isinstance(v, slice):
return tuple(range(num)[v])
elif isinstance(v, Sequence):
return tuple(v)
elif isinstance(v, int):
return (v,)
raise TypeError(f"condition {v!r} of type {type(v)} not valid")
def get_geometric(id, b_min, b_max, b_num):
if b_num == 1:
return b_min
return 0 if id == 0 else b_min * (b_max / b_min) ** ((id - 1) / (b_num - 2))
def get_linear(id, d_min, d_max, d_num) -> float:
if d_num == 1:
return d_min
return d_min + (d_max - d_min) * (id / (d_num - 1))
def int_linear(id, d_min, d_max, d_num) -> int:
if d_num == 1:
return d_min
return d_min + id * ((d_max - d_min) // (d_num - 1))
def unit_formatter(unit: str, decimals: int = 1) -> Callable[[float | int], str]:
if not unit:
def formatter(val):
return f"{val:.{decimals}g}"
else:
def formatter(val):
base, true_exp = format(val, f".{3+decimals}e").split("e")
true_exp = int(true_exp)
exp, mult = divmod(true_exp, 3)
prefix = "yzafpnµm kMGTPEZY"[8 + exp] if exp else ""
return f"{float(base)*10**mult:.{decimals}f}{prefix}{unit}"
return formatter
class Variable(Protocol[T]):
place: int
def __call__(self, _: int, local: bool = False) -> T:
...
def __repr__(self) -> str:
...
def __len__(self) -> int:
...
def format(self, id: int, local: bool = False):
return f"{self.name}={self.formatter(self(id, local))}"
def parse(self, _: str) -> T:
...
def filter(self, local_id) -> tuple[list[int], tuple[int, ...]]:
"""
filter based on the desired local id.
Parameters
----------
local_id : int
index of the desired value
Returns
-------
list[int]
list of all global indices point to instances of this variable parameter that have the
same value
tuple[int, ...]
resulting shape formed by all other variable parameters
"""
shape = self.all_nums.copy()
shape[self.place] = 1
indices = [
i
for i, indices in enumerate(itertools.product(*(range(k) for k in self.all_nums)))
if indices[self.place] == local_id
]
return indices, tuple(shape)
@dataclass
class FuncVariable(Variable[float]):
func: Callable[[int, float, float, int], float]
args: tuple[float, float, int]
all_nums: list[int]
place: int
name: str
suffix: str = ""
decimals: int = 4
formatter: Callable[[int], str] = field(init=False)
def __getstate__(self):
return {k: v for k, v in self.__dict__.items() if k != "formatter"}
def __setstate__(self, d):
self.__dict__ |= d
self.__post_init__()
def __post_init__(self):
self.formatter = unit_formatter(self.suffix, self.decimals)
def __call__(self, id: int, local: bool = False) -> float:
if not local:
if not isinstance(id, (int, np.integer)):
raise TypeError(f"id {id!r} is not an integer")
if None in self.all_nums:
raise ValueError("at least one VariableParameter has not been configured")
id = debase(id, self.all_nums)[self.place]
if id >= self.args[2]:
raise ValueError(
f"id {id} is too big for variable parameter of size {self.args[2]}"
)
return self.func(id, *self.args)
def __repr__(self) -> str:
return f"{self.__class__.__name__}({', '.join(format(el) for el in self.args)})"
def __len__(self) -> int:
return self.args[2]
def parse(self, s: str):
return NotImplemented
@dataclass
class ArrayVariable(Variable[T]):
values: Sequence[T]
all_nums: list[int]
place: int
name: str
suffix: str
decimals: int
def __call__(self, id: int, local: bool = False) -> T:
if not local:
id = debase(id, self.all_nums)[self.place]
if id >= len(self.values):
raise ValueError(
f"id {id} is too big for variable parameter of size {len(self.values)}"
)
return self.values[id]
def __len__(self) -> int:
return 1
def format(self, _: int, local: bool = False) -> str:
return self.formatted
def parse(self, _: str) -> float:
return NotImplemented
@dataclass
class Constant(Variable[T]):
value: float | int
place: int
name: str
suffix: str
decimals: int
def __post_init__(self):
self.formatted = f"{self.name}={unit_formatter(self.suffix, self.decimals)(self.value)}"
def __call__(self, _: int, local: bool = False) -> T:
return self.value
def __len__(self) -> int:
return 1
def local(self, _: int) -> T:
return self.value
def format(self, _: int, local: bool = False) -> str:
return self.formatted
def parse(self, _: str) -> float:
return NotImplemented
@dataclass(unsafe_hash=True)
class VariableParameter:
func: Callable[[int, float, float, int], float] = get_linear
default: float | int | None = None
suffix: str = ""
decimals: int = 4
default_callable: Variable | None = field(init=False)
place: int | None = field(default=None, init=False)
public_name: str = field(init=False)
private_name: str = field(init=False)
def __set_name__(self, owner: type, name: str):
self.public_name = name
self.private_name = "_" + name
if self.default is not None:
self.default_callable = Constant(
value=self.default,
place=self.place,
name=self.public_name,
suffix=self.suffix,
decimals=self.decimals,
)
else:
self.default_callable = None
def __set__(self, instance, value):
all_nums = instance.__variables_nums__
if value is self:
if self.default_callable is None:
raise self._error_no_default()
var_obj = self.default_callable
var_num = 1
elif isinstance(value, (float, int, complex)):
var_obj = Constant(value, self.place, self.public_name, self.suffix, self.decimals)
var_num = 1
elif isinstance(value, Sequence):
if isinstance(value[0], Sequence):
value = value[0]
var_obj = FuncVariable(
func=self.func,
value=value,
all_nums=all_nums,
place=self.place,
name=self.public_name,
suffix=self.suffix,
decimals=self.decimals,
)
var_num = value[2]
else:
var_obj = ArrayVariable(
values=value,
place=self.place,
name=self.public_name,
suffix=self.suffix,
decimals=self.decimals,
)
else:
raise TypeError(f"value {value!r} of type {type(value)} not recognized")
all_nums[self.place] = var_num
instance.__dict__[self.private_name] = var_obj
def __get__(self, instance, _):
if instance is None:
return self
if self.private_name not in instance.__dict__:
if self.default_callable is None:
raise self._error_no_default()
return self.default_callable
return instance.__dict__[self.private_name]
def _error_no_default(self) -> ValueError:
return ValueError(
f"Variable parameter {self.public_name!r} has not been initialized "
"and no default has been set"
)
@dataclass
class Filter:
indices: list[int]
shape: tuple[int, ...]
def __iter__(self) -> Iterator[int]:
yield from self.indices
def __call__(
self, arr: Sequence | np.ndarray, axis: int = 0, squeeze: bool = True
) -> np.ndarray:
"""
filters and reshapes an array that has already been filtered
Parameters
----------
arr : Sequence | np.ndarray, shape (..., n, ...)
at index `axis` ^
array to reshape
axis : int, optional
which axis to reshape, by default 0
squeeze : bool, optional
squeeze the array to get rid of axes of size 1
Returns
-------
arr : np.ndarray, shape (..., *shape, ...) where `np.prod(shape) == n`
"""
arr = np.asarray(arr)
arr = arr[*((slice(None),) * axis), self.indices]
return self.reshape(arr, axis, squeeze)
def __len__(self) -> int:
return len(self.indices)
def __getitem__(self, key):
return self.indices[key]
def reshape(
self, arr: Sequence | np.ndarray, axis: int = 0, squeeze: bool = True
) -> np.ndarray:
"""
reshapes an array that has already been filtered
Parameters
----------
arr : Sequence | np.ndarray, shape (..., n, ...)
at index `axis` ^
array to reshape
axis : int, optional
which axis to reshape
squeeze : bool, optional
squeeze the array to get rid of axes of size 1
Returns
-------
arr : np.ndarray, shape (..., *shape, ...) where `np.prod(shape) == n`
"""
arr = np.asanyarray(arr)
if axis < 0:
axis = len(self.shape) + axis
arr = arr.reshape(*arr.shape[:axis], *self.shape, *arr.shape[axis + 1 :])
if squeeze:
arr = arr.squeeze()
return arr
def vfield(
func: Callable[[int, float, float, int], float] = get_linear,
default: float | int | None = None,
suffix: str = "",
decimals: int = 4,
):
return field(default=VariableParameter(func, default, suffix, decimals))
def create_filter(_vfields: dict[str, VariableParameter]):
def filter(self, **kwargs):
"""
call Config.filter(param_a=0, param_b=(2, 4, 6))
"""
if any(k not in _vfields for k in kwargs):
extra = set(kwargs) - set(_vfields)
raise NameError(f"class {self.__class__.__name__} has no attribute(s) {extra}")
all_local_indices = {
k: tuple(range(p_num)) for k, p_num in zip(_vfields, self.__variables_nums__)
}
conditions = {
k: normalize_condition(v, all_local_indices[k][-1] + 1) for k, v in kwargs.items()
}
conditions = list((all_local_indices | conditions).values())
all_indices = []
for global_index, local_indices in enumerate(
itertools.product(*all_local_indices.values())
):
if all(j in cond for j, cond in zip(local_indices, conditions)):
all_indices.append(global_index)
shape = tuple(len(s) for s in conditions)
return Filter(all_indices, shape)
return filter
def vdataclass(cls: type[T]) -> type[T]:
_vfields = {
k: v.default
for k, v in cls.__dict__.items()
if isinstance(getattr(v, "default", None), VariableParameter)
}
if len(_vfields) == 0:
warnings.warn(
f"class {cls.__qualname__} doesn't contain any variable parameter,"
"building normal dataclass instead"
)
return dataclass(cls)
# put __variables_nums__ at the begining of the dict, as other fields need it
cls.__annotations__ = dict(__variables_nums__="list[int]") | cls.__annotations__
cls.__variables_nums__ = field(
init=False, repr=False, default_factory=(lambda: [None] * len(_vfields))
)
cls = dataclass(cls)
for i, v in enumerate(_vfields.values()):
v.place = i
def _config_len(self):
return np.prod(self.__variables_nums__)
setattr(cls, "filter", create_filter(_vfields))
setattr(cls, "__len__", _config_len)
return cls

View File

@@ -0,0 +1,64 @@
from dataclasses import field
import pytest
from scgenerator.variableparameters import Variable, vdataclass, vfield
def test_vfield_identification():
"""only vfields and not normal fields count"""
class Conf:
x: int
with pytest.warns(UserWarning):
vdataclass(Conf)
@vdataclass
class Conf2:
x: Variable = vfield(default=5)
assert hasattr(Conf2, "filter")
def test_constant():
"""classes with constant fields don't increase size and always return the constant"""
@vdataclass
class Conf:
x: Variable = vfield(default=3)
y: Variable = vfield(default=4)
conf = Conf()
assert len(conf) == 1
assert conf.x(0) == 3
assert conf.y(0) == 4
with pytest.raises(ValueError):
conf.x(1)
with pytest.raises(ValueError):
conf.y(1)
def test_decoration():
"""proper construction of the class"""
def test_name_error():
"""name errors are raised when accessing inexistent variable (direct, filter, ...)"""
def test_defaults():
"""default values are respected, of proper type and of size one"""
def test_formatting():
"""formatting is always respected"""
def test_param_parsing():
"""parsing a string or path returns the correct values"""
def test_config_parsing():
"""parsing a string returns the exact id corresponding to the string/path"""