added synced parameters

This commit is contained in:
Benoît Sierro
2023-10-18 08:52:31 +02:00
parent 0e1eb502a4
commit c153ef3af9
3 changed files with 261 additions and 199 deletions

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project] [project]
name = "scgenerator" name = "scgenerator"
version = "0.3.20" version = "0.3.21"
description = "Simulate nonlinear pulse propagation in optical fibers" description = "Simulate nonlinear pulse propagation in optical fibers"
readme = "README.md" readme = "README.md"
authors = [{ name = "Benoit Sierro", email = "benoit.sierro@iap.unibe.ch" }] authors = [{ name = "Benoit Sierro", email = "benoit.sierro@iap.unibe.ch" }]
@@ -25,6 +25,10 @@ dependencies = [
"pydantic-settings", "pydantic-settings",
] ]
[project.optional-dependencies]
cli = ["click"]
test = ["pytest"]
[tool.ruff] [tool.ruff]
line-length = 100 line-length = 100
ignore = ["E741"] ignore = ["E741"]

View File

@@ -1,3 +1,5 @@
from __future__ import annotations
import itertools import itertools
import warnings import warnings
from dataclasses import dataclass, field from dataclasses import dataclass, field
@@ -11,6 +13,196 @@ T = TypeVar("T")
P = ParamSpec("P") P = ParamSpec("P")
@dataclass
class Variable(Generic[T]):
name: str
values: Sequence[T]
place: int
all_nums: list[int]
suffix: str = ""
decimals: int = 4
formatter: Callable[[int], str] = field(init=False)
def __getstate__(self):
return {k: v for k, v in self.__dict__.items() if k != "formatter"}
def __setstate__(self, d):
self.__dict__ |= d
self.__post_init__()
def __post_init__(self):
self.formatter = unit_formatter(self.suffix, self.decimals)
def __call__(self, id: int, local: bool = False) -> T:
if id < 0:
raise IndexError("negative indices are not allowed")
if not local:
if not isinstance(id, (int, np.integer)):
raise TypeError(f"id {id!r} is not an integer")
if None in self.all_nums:
raise ValueError("at least one VariableParameter has not been configured")
id = debase(id, self.all_nums)[self.place]
if id >= len(self):
raise IndexError(f"id {id} is too big for variable parameter of size {len(self)}")
return self.values[id]
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.values})"
def __len__(self) -> int:
return len(self.values)
def format(self, id: int, local: bool = False):
return f"{self.name}={self.formatter(self(id, local))}"
@dataclass(unsafe_hash=True)
class VariableParameter:
default: float | int | None = None
suffix: str = ""
decimals: int = 4
sync: VariableParameter | None = None
default_sequence: Variable | None = field(init=False)
place: int | None = field(default=None, init=False)
public_name: str = field(init=False)
private_name: str = field(init=False)
def __set_name__(self, owner: type, name: str):
self.public_name = name
self.private_name = "_variable__" + name
if self.default is not None:
self.default_sequence = get_sequence(self.default)
else:
self.default_sequence = None
def __set__(self, instance, value):
all_nums = instance.__variables_nums__
if value is self:
if self.default_sequence is None:
raise self._error_no_default()
all_nums[self.place] = len(self.default_sequence)
return
sequence = get_sequence(value)
self._check_sync(instance, sequence)
var_obj = Variable(
name=self.public_name,
values=sequence,
place=self.place,
suffix=self.suffix,
decimals=self.decimals,
all_nums=all_nums,
)
all_nums[self.place] = len(var_obj)
instance.__dict__[self.private_name] = var_obj
def __get__(self, instance, _):
if instance is None:
return self
if self.private_name not in instance.__dict__:
self._create_default(instance)
return instance.__dict__[self.private_name]
def _create_default(self, instance):
all_nums = instance.__variables_nums__
if self.default_sequence is None:
raise self._error_no_default()
self._check_sync(instance, self.default_sequence)
obj = Variable(
name=self.public_name,
values=self.default_sequence,
place=self.place,
suffix=self.suffix,
decimals=self.decimals,
all_nums=all_nums,
)
all_nums[self.place] = len(obj)
instance.__dict__[self.private_name] = obj
def _check_sync(self, instance, sequence):
if self.sync is not None and (this_len := len(sequence)) != (
other_len := len(getattr(instance, self.sync.private_name))
):
raise ValueError(
f"sequence of len {this_len} doesn't match syncronized sequence of len {other_len}"
)
def _error_no_default(self) -> ValueError:
return ValueError(
f"Variable parameter {self.public_name!r} has not been initialized "
"and no default has been set"
)
@dataclass
class Filter:
indices: list[int]
shape: tuple[int, ...]
def __iter__(self) -> Iterator[int]:
yield from self.indices
def __call__(
self, arr: Sequence | np.ndarray, axis: int = 0, squeeze: bool = True
) -> np.ndarray:
"""
filters and reshapes an array that has already been filtered
Parameters
----------
arr : Sequence | np.ndarray, shape (..., n, ...)
at index `axis` ^
array to reshape
axis : int, optional
which axis to reshape, by default 0
squeeze : bool, optional
squeeze the array to get rid of axes of size 1
Returns
-------
arr : np.ndarray, shape (..., *shape, ...) where `np.prod(shape) == n`
"""
arr = np.asarray(arr)
arr = arr[*((slice(None),) * axis), self.indices]
return self.reshape(arr, axis, squeeze)
def __len__(self) -> int:
return len(self.indices)
def __getitem__(self, key):
return self.indices[key]
def reshape(
self, arr: Sequence | np.ndarray, axis: int = 0, squeeze: bool = True
) -> np.ndarray:
"""
reshapes an array that has already been filtered
Parameters
----------
arr : Sequence | np.ndarray, shape (..., n, ...)
at index `axis` ^
array to reshape
axis : int, optional
which axis to reshape
squeeze : bool, optional
squeeze the array to get rid of axes of size 1
Returns
-------
arr : np.ndarray, shape (..., *shape, ...) where `np.prod(shape) == n`
"""
arr = np.asanyarray(arr)
if axis < 0:
axis = len(self.shape) + axis
arr = arr.reshape(*arr.shape[:axis], *self.shape, *arr.shape[axis + 1 :])
if squeeze:
arr = arr.squeeze()
return arr
def debase(num: int, base: tuple[int, ...], strict: bool = True) -> tuple[int, ...]: def debase(num: int, base: tuple[int, ...], strict: bool = True) -> tuple[int, ...]:
""" """
decomboses a number into its digits in a variable base decomboses a number into its digits in a variable base
@@ -105,191 +297,17 @@ def get_sequence(value) -> np.ndarray:
return np.array([value]) return np.array([value])
@dataclass
class Variable(Generic[T]):
name: str
values: Sequence[T]
place: int
all_nums: list[int]
suffix: str = ""
decimals: int = 4
formatter: Callable[[int], str] = field(init=False)
def __getstate__(self):
return {k: v for k, v in self.__dict__.items() if k != "formatter"}
def __setstate__(self, d):
self.__dict__ |= d
self.__post_init__()
def __post_init__(self):
self.formatter = unit_formatter(self.suffix, self.decimals)
def __call__(self, id: int, local: bool = False) -> T:
if id < 0:
raise IndexError("negative indices are not allowed")
if not local:
if not isinstance(id, (int, np.integer)):
raise TypeError(f"id {id!r} is not an integer")
if None in self.all_nums:
raise ValueError("at least one VariableParameter has not been configured")
id = debase(id, self.all_nums)[self.place]
if id >= len(self):
raise IndexError(f"id {id} is too big for variable parameter of size {len(self)}")
return self.values[id]
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.values})"
def __len__(self) -> int:
return len(self.values)
def parse(self, s: str):
return NotImplemented
def format(self, id: int, local: bool = False):
return f"{self.name}={self.formatter(self(id, local))}"
@dataclass(unsafe_hash=True)
class VariableParameter:
func: Callable[[int, float, float, int], float] = get_linear
default: float | int | None = None
suffix: str = ""
decimals: int = 4
default_sequence: Variable | None = field(init=False)
place: int | None = field(default=None, init=False)
public_name: str = field(init=False)
private_name: str = field(init=False)
def __set_name__(self, owner: type, name: str):
self.public_name = name
self.private_name = "_variable__" + name
if self.default is not None:
self.default_sequence = get_sequence(self.default)
else:
self.default_sequence = None
def __set__(self, instance, value):
all_nums = instance.__variables_nums__
if value is self:
if self.default_sequence is None:
raise self._error_no_default()
all_nums[self.place] = len(self.default_sequence)
return
var_obj = Variable(
name=self.public_name,
values=get_sequence(value),
place=self.place,
suffix=self.suffix,
decimals=self.decimals,
all_nums=all_nums,
)
all_nums[self.place] = len(var_obj)
instance.__dict__[self.private_name] = var_obj
def __get__(self, instance, _):
if instance is None:
return self
if self.private_name not in instance.__dict__:
all_nums = instance.__variables_nums__
if self.default_sequence is None:
raise self._error_no_default()
obj = Variable(
name=self.public_name,
values=self.default_sequence,
place=self.place,
suffix=self.suffix,
decimals=self.decimals,
all_nums=all_nums,
)
all_nums[self.place] = len(obj)
instance.__dict__[self.private_name] = obj
return instance.__dict__[self.private_name]
def _error_no_default(self) -> ValueError:
return ValueError(
f"Variable parameter {self.public_name!r} has not been initialized "
"and no default has been set"
)
@dataclass
class Filter:
indices: list[int]
shape: tuple[int, ...]
def __iter__(self) -> Iterator[int]:
yield from self.indices
def __call__(
self, arr: Sequence | np.ndarray, axis: int = 0, squeeze: bool = True
) -> np.ndarray:
"""
filters and reshapes an array that has already been filtered
Parameters
----------
arr : Sequence | np.ndarray, shape (..., n, ...)
at index `axis` ^
array to reshape
axis : int, optional
which axis to reshape, by default 0
squeeze : bool, optional
squeeze the array to get rid of axes of size 1
Returns
-------
arr : np.ndarray, shape (..., *shape, ...) where `np.prod(shape) == n`
"""
arr = np.asarray(arr)
arr = arr[*((slice(None),) * axis), self.indices]
return self.reshape(arr, axis, squeeze)
def __len__(self) -> int:
return len(self.indices)
def __getitem__(self, key):
return self.indices[key]
def reshape(
self, arr: Sequence | np.ndarray, axis: int = 0, squeeze: bool = True
) -> np.ndarray:
"""
reshapes an array that has already been filtered
Parameters
----------
arr : Sequence | np.ndarray, shape (..., n, ...)
at index `axis` ^
array to reshape
axis : int, optional
which axis to reshape
squeeze : bool, optional
squeeze the array to get rid of axes of size 1
Returns
-------
arr : np.ndarray, shape (..., *shape, ...) where `np.prod(shape) == n`
"""
arr = np.asanyarray(arr)
if axis < 0:
axis = len(self.shape) + axis
arr = arr.reshape(*arr.shape[:axis], *self.shape, *arr.shape[axis + 1 :])
if squeeze:
arr = arr.squeeze()
return arr
def vfield( def vfield(
func: Callable[[int, float, float, int], float] = get_linear,
default: float | int | None = None, default: float | int | None = None,
suffix: str = "", suffix: str = "",
decimals: int = 4, decimals: int = 4,
sync: VariableParameter | None = None,
): ):
return field(default=VariableParameter(func, default, suffix, decimals)) return field(
default=VariableParameter(
default, suffix, decimals, sync.default if sync is not None else None
)
)
def create_filter(_vfields: dict[str, VariableParameter]): def create_filter(_vfields: dict[str, VariableParameter]):
@@ -323,7 +341,7 @@ def create_filter(_vfields: dict[str, VariableParameter]):
def vdataclass(cls: type[T]) -> type[T]: def vdataclass(cls: type[T]) -> type[T]:
_vfields = { _vfields: dict[str, VariableParameter] = {
k: v.default k: v.default
for k, v in cls.__dict__.items() for k, v in cls.__dict__.items()
if isinstance(getattr(v, "default", None), VariableParameter) if isinstance(getattr(v, "default", None), VariableParameter)
@@ -334,16 +352,21 @@ def vdataclass(cls: type[T]) -> type[T]:
"building normal dataclass instead" "building normal dataclass instead"
) )
return dataclass(cls) return dataclass(cls)
v_nums = []
for v in _vfields.values():
if v.sync is not None:
v.place = v.sync.place
else:
v.place = len(v_nums)
v_nums.append(None)
# put __variables_nums__ at the begining of the dict, as other fields need it # put __variables_nums__ at the begining of the dict, as other fields need it
cls.__annotations__ = dict(__variables_nums__="list[int]") | cls.__annotations__ cls.__annotations__ = dict(__variables_nums__="list[int]") | cls.__annotations__
cls.__variables_nums__ = field( cls.__variables_nums__ = field(init=False, repr=False, default_factory=v_nums.copy)
init=False, repr=False, default_factory=(lambda: [None] * len(_vfields))
)
cls.__vfields__ = _vfields cls.__vfields__ = _vfields
cls = dataclass(cls) cls = dataclass(cls)
for i, v in enumerate(_vfields.values()):
v.place = i
def _config_len(self): def _config_len(self):
return np.prod(self.__variables_nums__) return np.prod(self.__variables_nums__)

View File

@@ -102,6 +102,53 @@ def test_constant_list():
conf.y(6) conf.y(6)
def test_simple_synchronize():
"""synchronize 2 variable fields"""
@vdataclass
class Conf:
x: Variable = vfield(default=[1, 2, 7])
y: Variable = vfield(default=[2, 0, 0], sync=x)
conf = Conf()
assert conf.x(0) == 1
assert conf.x(1) == 2
assert conf.x(2) == 7
assert conf.y(0) == 2
assert conf.y(1) == 0
assert conf.y(2) == 0
with pytest.raises(ValueError):
conf.y(3)
with pytest.raises(ValueError):
conf.x(3)
def test_sync_strict():
@vdataclass
class Conf:
x: Variable = vfield(default=[1, 2, 7])
y: Variable = vfield(default=[2, 0], sync=x)
conf = Conf()
assert conf.x(2) == 7
with pytest.raises(ValueError):
conf.y(0)
conf.x = [78, 55]
assert len(conf) == 2
assert conf.y(1) == 0
assert conf.x(1) == 55
with pytest.raises(ValueError):
conf.y = [1, 2, 3]
conf.x = [11, 22, 33, 44, 55]
conf.y = [0, 1, 33, 111, 1111]
assert conf.x(2) == conf.y(2) == 33
assert len(conf) == len(conf.x) == len(conf.y) == 5
def test_decoration(): def test_decoration():
"""proper construction of the class""" """proper construction of the class"""
@@ -275,15 +322,3 @@ def test_filter():
mat = np.random.rand(70, 12, 11) mat = np.random.rand(70, 12, 11)
assert f(mat.reshape(len(conf), 11), squeeze=False).shape == (12, 1, 1, 3, 11) assert f(mat.reshape(len(conf), 11), squeeze=False).shape == (12, 1, 1, 3, 11)
def test_param_parsing():
"""parsing a string or path returns the correct values"""
def test_config_parsing():
"""parsing a string returns the exact id corresponding to the string/path"""
def test_repr():
"""print a config object correctly"""