import numpy as np import pytest import scgenerator as sc def test_normalisation(): rng = np.random.default_rng(56) t = np.linspace(-10, 10, 512) s = np.exp(-((t / 2.568) ** 2)) + rng.random(len(t)) / 15 target = np.sum(sc.abs2(np.fft.fft(s))) / 512 noise = sc.noise.NoiseMeasurement.from_time_series(s, 1, "boxcar", detrend=False) assert np.sum(noise.psd) == pytest.approx(target) def test_time_and_back(): """ sampling a time series from a spectrum and transforming it back yields the same spectrum """ rng = np.random.default_rng(57) t = np.linspace(-10, 10, 512) signal = np.exp(-((t / 2.568) ** 2)) + rng.random(len(t)) / 15 noise = sc.noise.NoiseMeasurement.from_time_series(signal, 1, "boxcar", detrend=False) _, new_signal = noise.time_series(len(noise.freq)) new_noise = sc.noise.NoiseMeasurement.from_time_series(new_signal, 1, "boxcar", detrend=False) assert new_noise.psd == pytest.approx(noise.psd) def test_nyquist(): """ generating a time series and tranforming it back yields the same spectrum. Using segements, the nyquist frequency is exactly spread out over the frequency bin width """ signal = np.cos(np.arange(1024) * np.pi) n1 = sc.noise.NoiseMeasurement.from_time_series(signal, 1, None) n3 = sc.noise.NoiseMeasurement.from_time_series(signal, 1, None, 512) n15 = sc.noise.NoiseMeasurement.from_time_series(signal, 1, None, 128) assert n1.psd[-1] == n3.psd[-1] * 2 == n15.psd[-1] * 8 def test_sampling(): f = np.geomspace(10, 2e6, 138) spec = 1 / (f + 1) noise = sc.noise.NoiseMeasurement(f, spec) assert noise.sample_spectrum(257)[0][0] == 0 assert noise.sample_spectrum(257, log_mode=True)[0][0] == 0