\documentclass[preview]{standalone} \usepackage{siunitx} \usepackage{tikz} \usepackage[siunitx]{circuitikz} \usepackage{babel} \usepackage{acronym} \newcommand{\At}{A(z, t)} \newcommand{\Et}{E(z, t)} \newcommand{\Ew}{\tilde{E}(z, \omega)} \newcommand{\PNL}{\tilde{\mathrm{P}}^\mathrm{NL}} \begin{document} Complex envelope such that $|A|^2$ is in W with E in V/m~: \begin{equation} \At = \sqrt{\frac12 \epsilon_0 c n A_\mathrm{eff}} \Et \end{equation} Equations with E in V/m \begin{equation} \frac{\partial \Ew}{\partial z} = i\left(\beta(\omega) - \frac{\omega}{\nu} \right)\Ew + i \frac{\omega^2}{2c\epsilon_0 \beta(\omega)}\PNL(z, \omega) \end{equation} \begin{equation} \tau = t - \frac{z}{\nu} \,, \quad \xi = z \,, \quad \frac{\partial}{\partial z} = -\frac1{\nu}\frac{\partial}{\partial \tau} + \frac{\partial}{\partial \xi} = -\frac{i \omega}{\nu} + \frac{\partial}{\partial \xi} \,, \quad \frac{\partial}{\partial t} = \frac{\partial}{\partial \tau} \end{equation} $\Rightarrow$ \begin{equation} \frac{\partial \Ew}{\partial z} = i\beta(\omega)\Ew + i \frac{\omega^2}{2c\epsilon_0 \beta(\omega)}\PNL(z, \omega) \end{equation} \end{document}