Files
scgenerator/tests/test_noise.py
Benoît Sierro 891e12e7fd noise fix
2023-11-08 09:53:16 +01:00

80 lines
2.5 KiB
Python

import numpy as np
import pytest
import scgenerator as sc
def test_segmentation():
t = np.arange(32)
r = np.arange(16)
assert np.all(sc.noise.segments(t, 3) == np.vstack([r, r + 8, r + 16]))
r = np.arange(8)
assert np.all(sc.noise.segments(t, 4) == np.vstack([r, r + 6, r + 12, r + 18]))
assert np.all(sc.noise.segments(t, 5) == np.vstack([r, r + 5, r + 10, r + 15, r + 20]))
assert np.all(sc.noise.segments(t, 6) == np.vstack([r, r + 4, r + 8, r + 12, r + 16, r + 20]))
assert np.all(
sc.noise.segments(t, 7) == np.vstack([r, r + 4, r + 8, r + 12, r + 16, r + 20, r + 24])
)
def test_normalisation():
rng = np.random.default_rng(56)
t = np.linspace(-10, 10, 512)
s = np.exp(-((t / 2.568) ** 2)) + rng.random(len(t)) / 15
target = np.sum(sc.abs2(np.fft.fft(s))) / 512
noise = sc.noise.NoiseMeasurement.from_time_series(s, 1, "Square", force_no_dc=False)
assert np.sum(noise.psd) == pytest.approx(target)
def test_no_dc():
rng = np.random.default_rng(56)
t = np.linspace(-10, 10, 512)
s = rng.normal(0, 1, len(t)).cumsum()
noise = sc.noise.NoiseMeasurement.from_time_series(s, 1)
assert noise.psd[0] == pytest.approx(0)
def test_time_and_back():
"""
sampling a time series from a spectrum and transforming
it back should yield the same spectrum
"""
rng = np.random.default_rng(57)
t = np.linspace(-10, 10, 512)
signal = np.exp(-((t / 2.568) ** 2)) + rng.random(len(t)) / 15
noise = sc.noise.NoiseMeasurement.from_time_series(signal, 1, "Square", force_no_dc=False)
_, new_signal = noise.time_series(len(t))
new_noise = sc.noise.NoiseMeasurement.from_time_series(
new_signal, 1, "Square", force_no_dc=False
)
assert new_noise.psd == pytest.approx(noise.psd)
def test_nyquist():
"""
generating a time series and tranforming it back yields the same spectrum.
Using segements, the nyquist frequency is exactly spread out over the frequency bin width
"""
signal = np.cos(np.arange(1024) * np.pi)
n1 = sc.noise.NoiseMeasurement.from_time_series(signal, 1, None, 1)
n3 = sc.noise.NoiseMeasurement.from_time_series(signal, 1, None, 3)
n15 = sc.noise.NoiseMeasurement.from_time_series(signal, 1, None, 15)
assert n1.psd[-1] == n3.psd[-1] * 2 == n15.psd[-1] * 8
def test_sampling():
f = np.geomspace(10, 2e6, 138)
spec = 1 / (f + 1)
noise = sc.noise.NoiseMeasurement(f, spec)
assert noise.sample_spectrum(257)[0][0] == 0
assert noise.sample_spectrum(257, log_mode=True)[0][0] == 0