209 lines
7.7 KiB
Python
209 lines
7.7 KiB
Python
import unittest
|
|
from copy import deepcopy
|
|
|
|
import scgenerator.initialize as init
|
|
import numpy as np
|
|
import toml
|
|
from scgenerator import defaults, utils, math
|
|
from scgenerator.errors import *
|
|
|
|
|
|
def load_conf(name):
|
|
with open("testing/configs/" + name + ".toml") as file:
|
|
conf = toml.load(file)
|
|
return conf
|
|
|
|
|
|
def conf_maker(folder):
|
|
def conf(name):
|
|
return load_conf(folder + "/" + name)
|
|
|
|
return conf
|
|
|
|
|
|
class TestParamSequence(unittest.TestCase):
|
|
def iterconf(self, files):
|
|
conf = conf_maker("param_sequence")
|
|
for path in files:
|
|
yield init.ParamSequence(conf(path))
|
|
|
|
def test_no_repeat_in_sub_folder_names(self):
|
|
for param_seq in self.iterconf(["almost_equal", "equal", "no_variations"]):
|
|
l = []
|
|
s = []
|
|
for vary_list, _ in utils.required_simulations(param_seq.config):
|
|
self.assertNotIn(vary_list, l)
|
|
self.assertNotIn(utils.format_variable_list(vary_list), s)
|
|
l.append(vary_list)
|
|
s.append(utils.format_variable_list(vary_list))
|
|
|
|
def test_init_config_not_affected_by_iteration(self):
|
|
for param_seq in self.iterconf(["almost_equal", "equal", "no_variations"]):
|
|
config = deepcopy(param_seq.config)
|
|
for _ in utils.required_simulations(param_seq.config):
|
|
self.assertEqual(config.items(), param_seq.config.items())
|
|
|
|
def test_no_variations_yields_only_num_and_id(self):
|
|
for param_seq in self.iterconf(["no_variations"]):
|
|
for vary_list, _ in utils.required_simulations(param_seq.config):
|
|
self.assertEqual(vary_list[1][0], "num")
|
|
self.assertEqual(vary_list[0][0], "id")
|
|
self.assertEqual(2, len(vary_list))
|
|
|
|
|
|
class TestInitializeMethods(unittest.TestCase):
|
|
def test_validate_types(self):
|
|
conf = lambda s: load_conf("validate_types/" + s)
|
|
with self.assertRaisesRegex(TypeError, "belong"):
|
|
init._validate_types(conf("bad1"))
|
|
|
|
with self.assertRaisesRegex(TypeError, "valid list of behaviors"):
|
|
init._validate_types(conf("bad2"))
|
|
|
|
with self.assertRaisesRegex(TypeError, "single, real, non-negative number"):
|
|
init._validate_types(conf("bad3"))
|
|
|
|
with self.assertRaisesRegex(TypeError, "'parallel' is not a valid variable parameter"):
|
|
init._validate_types(conf("bad4"))
|
|
|
|
with self.assertRaisesRegex(TypeError, "Variable parameters should be specified in a list"):
|
|
init._validate_types(conf("bad5"))
|
|
|
|
with self.assertRaisesRegex(
|
|
TypeError,
|
|
"value '0' of type .*int.* for key 'repeat' is not valid, must be a strictly positive integer",
|
|
):
|
|
init._validate_types(conf("bad6"))
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
r"Variable parameters lists should contain at least 1 element",
|
|
):
|
|
init._ensure_consistency(conf("bad7"))
|
|
|
|
self.assertIsNone(init._validate_types(conf("good")))
|
|
|
|
def test_ensure_consistency(self):
|
|
conf = lambda s: load_conf("ensure_consistency/" + s)
|
|
with self.assertRaisesRegex(
|
|
MissingParameterError,
|
|
r"1 of '\['t0', 'width'\]' is required and no defaults have been set",
|
|
):
|
|
init._ensure_consistency(conf("bad1"))
|
|
|
|
with self.assertRaisesRegex(
|
|
MissingParameterError,
|
|
r"1 of '\['peak_power', 'mean_power', 'energy', 'width', 't0'\]' is required when 'soliton_num' is specified and no defaults have been set",
|
|
):
|
|
init._ensure_consistency(conf("bad2"))
|
|
|
|
with self.assertRaisesRegex(
|
|
MissingParameterError,
|
|
r"2 of '\['dt', 't_num', 'time_window'\]' are required and no defaults have been set",
|
|
):
|
|
init._ensure_consistency(conf("bad3"))
|
|
|
|
with self.assertRaisesRegex(
|
|
DuplicateParameterError,
|
|
r"got multiple values for parameter 'width'",
|
|
):
|
|
init._ensure_consistency(conf("bad4"))
|
|
|
|
with self.assertRaisesRegex(
|
|
MissingParameterError,
|
|
r"'capillary_thickness' is a required parameter for fiber model 'hasan' and no defaults have been set",
|
|
):
|
|
init._ensure_consistency(conf("bad5"))
|
|
|
|
with self.assertRaisesRegex(
|
|
MissingParameterError,
|
|
r"1 of '\['capillary_spacing', 'capillary_outer_d'\]' is required for fiber model 'hasan' and no defaults have been set",
|
|
):
|
|
init._ensure_consistency(conf("bad6"))
|
|
|
|
self.assertLessEqual(
|
|
{"model": "pcf"}.items(), init._ensure_consistency(conf("good1"))["fiber"].items()
|
|
)
|
|
|
|
self.assertNotIn("gas", init._ensure_consistency(conf("good1")))
|
|
|
|
self.assertNotIn("gamma", init._ensure_consistency(conf("good4"))["fiber"])
|
|
|
|
self.assertLessEqual(
|
|
{"raman_type": "agrawal"}.items(),
|
|
init._ensure_consistency(conf("good2"))["simulation"].items(),
|
|
)
|
|
|
|
self.assertLessEqual(
|
|
{"name": "no name"}.items(), init._ensure_consistency(conf("good3")).items()
|
|
)
|
|
|
|
self.assertLessEqual(
|
|
{"capillary_nested": 0, "capillary_resonance_strengths": []}.items(),
|
|
init._ensure_consistency(conf("good4"))["fiber"].items(),
|
|
)
|
|
|
|
self.assertLessEqual(
|
|
dict(he_mode=(1, 1)).items(),
|
|
init._ensure_consistency(conf("good5"))["fiber"].items(),
|
|
)
|
|
|
|
self.assertLessEqual(
|
|
dict(temperature=300, pressure=1e5, gas_name="vacuum", plasma_density=0).items(),
|
|
init._ensure_consistency(conf("good5"))["gas"].items(),
|
|
)
|
|
|
|
self.assertLessEqual(
|
|
dict(
|
|
t_num=16384,
|
|
time_window=37e-12,
|
|
lower_wavelength_interp_limit=defaults.default_parameters[
|
|
"lower_wavelength_interp_limit"
|
|
],
|
|
upper_wavelength_interp_limit=defaults.default_parameters[
|
|
"upper_wavelength_interp_limit"
|
|
],
|
|
).items(),
|
|
init._ensure_consistency(conf("good6"))["simulation"].items(),
|
|
)
|
|
|
|
def test_setup_custom_field(self):
|
|
d = np.load("testing/configs/custom_field/init_field.npz")
|
|
t = d["time"]
|
|
field = d["field"]
|
|
conf = load_conf("custom_field/no_change")
|
|
conf = init._generate_sim_grid(conf)
|
|
result = init.setup_custom_field(conf)
|
|
self.assertAlmostEqual(conf["field_0"].real.max(), field.real.max(), 4)
|
|
self.assertTrue(result)
|
|
|
|
conf = load_conf("custom_field/peak_power")
|
|
conf = init._generate_sim_grid(conf)
|
|
result = init.setup_custom_field(conf)
|
|
self.assertAlmostEqual(math.abs2(conf["field_0"]).max(), 20000, 4)
|
|
self.assertTrue(result)
|
|
|
|
conf = load_conf("custom_field/mean_power")
|
|
conf = init._generate_sim_grid(conf)
|
|
result = init.setup_custom_field(conf)
|
|
self.assertAlmostEqual(np.trapz(math.abs2(conf["field_0"]), conf["t"]), 0.22 / 40e6, 4)
|
|
self.assertTrue(result)
|
|
|
|
conf = load_conf("custom_field/recover1")
|
|
conf = init._generate_sim_grid(conf)
|
|
result = init.setup_custom_field(conf)
|
|
self.assertAlmostEqual(math.abs2(conf["field_0"] - field).sum(), 0)
|
|
self.assertTrue(result)
|
|
|
|
conf = load_conf("custom_field/recover2")
|
|
conf = init._generate_sim_grid(conf)
|
|
result = init.setup_custom_field(conf)
|
|
self.assertAlmostEqual((math.abs2(conf["field_0"]) / 0.9 - math.abs2(field)).sum(), 0)
|
|
self.assertTrue(result)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
conf = conf_maker("validate_types")
|
|
|
|
unittest.main()
|