better submit, more tests

This commit is contained in:
Benoît Sierro
2021-06-01 10:47:57 +02:00
parent 2fcd277563
commit e985f053ac
12 changed files with 176 additions and 69 deletions

View File

@@ -675,12 +675,25 @@ def compute_init_parameters(config: Dict[str, Any]) -> Dict[str, Any]:
def setup_custom_field(params: Dict[str, Any]) -> bool:
"""sets up a custom field function if necessary and returns
True if it did so, False otherwise
Parameters
----------
params : Dict[str, Any]
params dictionary
Returns
-------
bool
True if the field has been modified
"""
logger = get_logger(__name__)
custom_field = True
if "prev_data_dir" in params:
spec = io.load_last_spectrum(Path(params["prev_data_dir"]))[1]
params["field_0"] = np.fft.ifft(spec) * params["input_transmission"]
elif "field_file" in params:
params["field_0"] = np.fft.ifft(spec) * np.sqrt(params["input_transmission"])
else:
if "field_file" in params:
field_data = np.load(params["field_file"])
field_interp = interp1d(
field_data["time"], field_data["field"], bounds_error=False, fill_value=(0, 0)
@@ -689,9 +702,8 @@ def setup_custom_field(params: Dict[str, Any]) -> bool:
elif "field_0" in params:
params = _evalutate_custom_field_equation(params)
else:
custom_field = False
return False
if custom_field:
params["field_0"] = params["field_0"] * pulse.modify_field_ratio(
params["t"],
params["field_0"],
@@ -706,7 +718,7 @@ def setup_custom_field(params: Dict[str, Any]) -> bool:
logger.debug(f"had to adjust w by {delta_w}")
params["wavelength"] = units.m.inv(units.m(params["wavelength"]) - delta_w)
_update_frequency_domain(params)
return custom_field
return True
def _update_pulse_parameters(params):

View File

@@ -11,7 +11,7 @@ n is the number of spectra at the same z position and nt is the size of the time
import itertools
import os
from typing import Tuple
from typing import Literal, Tuple
import matplotlib.pyplot as plt
import numpy as np
@@ -115,14 +115,14 @@ def modify_field_ratio(
def conform_pulse_params(
shape,
width=None,
t0=None,
peak_power=None,
energy=None,
soliton_num=None,
gamma=None,
beta2=None,
shape: Literal["gaussian", "sech"],
width: float = None,
t0: float = None,
peak_power: float = None,
energy: float = None,
soliton_num: float = None,
gamma: float = None,
beta2: float = None,
):
"""makes sure all parameters of the pulse are set and consistent

View File

@@ -4,12 +4,65 @@ import re
import shutil
import subprocess
from datetime import datetime, timedelta
from typing import Tuple
import numpy as np
from ..initialize import validate_config_sequence
from ..io import Paths
from ..utils import count_variations
def primes(n):
primfac = []
d = 2
while d * d <= n:
while (n % d) == 0:
primfac.append(d) # supposing you want multiple factors repeated
n //= d
d += 1
if n > 1:
primfac.append(n)
return primfac
def balance(n, lim=(32, 32)):
factors = primes(n)
if len(factors) == 1:
factors = primes(n + 1)
a, b, x, y = 1, 1, 1, 1
while len(factors) > 0 and x <= lim[0] and y <= lim[1]:
a = x
b = y
if y >= x:
x *= factors.pop(0)
else:
y *= factors.pop()
return a, b
def distribute(
num: int, nodes: int = None, cpus_per_node: int = None, lim=(16, 32)
) -> Tuple[int, int]:
if nodes is None and cpus_per_node is None:
balanced = balance(num, lim)
if num > max(lim):
while np.product(balanced) < min(lim):
num += 1
balanced = balance(num, lim)
nodes = min(balanced)
cpus_per_node = max(balanced)
elif nodes is None:
nodes = num // cpus_per_node
while nodes > lim[0]:
nodes //= 2
elif cpus_per_node is None:
cpus_per_node = num // nodes
while cpus_per_node > lim[1]:
cpus_per_node //= 2
return nodes, cpus_per_node
def format_time(t):
try:
t = float(t)
@@ -25,9 +78,9 @@ def create_parser():
"-t", "--time", required=True, type=str, help="time required for the job in hh:mm:ss"
)
parser.add_argument(
"-c", "--cpus-per-node", required=True, type=int, help="number of cpus required per node"
"-c", "--cpus-per-node", default=None, type=int, help="number of cpus required per node"
)
parser.add_argument("-n", "--nodes", required=True, type=int, help="number of nodes required")
parser.add_argument("-n", "--nodes", default=None, type=int, help="number of nodes required")
parser.add_argument(
"--environment-setup",
required=False,
@@ -70,6 +123,8 @@ def main():
sim_num, _ = count_variations(final_config)
args.nodes, args.cpus_per_nodes = distribute(sim_num, args.nodes, args.cpus_per_nodes)
file_name = (
"submit " + final_config["name"] + "-" + format(datetime.now(), "%Y%m%d%H%M") + ".sh"
)

View File

@@ -25,10 +25,6 @@ from .const import PARAM_SEPARATOR, PREFIX_KEY_BASE, valid_variable, HUSH_PROGRE
from .logger import get_logger
from .math import *
# XXX ############################################
# XXX ############### Pure Python ################
# XXX ############################################
class PBars:
@classmethod
@@ -245,34 +241,6 @@ def format_value(value):
return str(value)
# def variable_list_from_path(s: str) -> List[tuple]:
# s = s.replace("/", "")
# str_list = s.split(PARAM_SEPARATOR)
# out = []
# for i in range(0, len(str_list) // 2 * 2, 2):
# out.append((str_list[i], get_value(str_list[i + 1])))
# return out
# def get_value(s: str):
# if s.lower() == "true":
# return True
# if s.lower() == "false":
# return False
# try:
# return int(s)
# except ValueError:
# pass
# try:
# return float(s)
# except ValueError:
# pass
# return s
def variable_iterator(config) -> Iterator[Tuple[List[Tuple[str, Any]], dict]]:
"""given a config with "variable" parameters, iterates through every possible combination,
yielding a a list of (parameter_name, value) tuples and a full config dictionary.
@@ -385,7 +353,7 @@ def parallelize(func, arg_iter, sim_jobs=4, progress_tracker_kwargs=None, const_
return np.array(results)
def deep_update(d: Mapping, u: Mapping):
def deep_update(d: Mapping, u: Mapping) -> dict:
for k, v in u.items():
if isinstance(v, collections.abc.Mapping):
d[k] = deep_update(d.get(k, {}), v)

Binary file not shown.

View File

@@ -0,0 +1,8 @@
dt = 1e-15
field_file = "testing/configs/custom_field/init_field.npz"
length = 1
mean_power = 220e-3
repetition_rate = 40e6
t_num = 2048
wavelength = 1000e-9
z_num = 32

View File

@@ -0,0 +1,6 @@
dt = 1e-15
field_file = "testing/configs/custom_field/init_field.npz"
length = 1
t_num = 2048
wavelength = 1000e-9
z_num = 32

View File

@@ -0,0 +1,7 @@
dt = 1e-15
field_file = "testing/configs/custom_field/init_field.npz"
length = 1
peak_power = 20000
t_num = 2048
wavelength = 1000e-9
z_num = 32

View File

@@ -0,0 +1,7 @@
dt = 1e-15
input_transmission = 1
length = 1
prev_data_dir = "testing/configs/custom_field/recover_data"
t_num = 2048
wavelength = 1000e-9
z_num = 32

View File

@@ -0,0 +1,7 @@
dt = 1e-15
input_transmission = 0.9
length = 1
prev_data_dir = "testing/configs/custom_field/recover_data"
t_num = 2048
wavelength = 1000e-9
z_num = 32

View File

@@ -5,6 +5,7 @@ name = "test config"
[fiber]
gamma = 0.018
length = 1
model = "pcf"
pitch = 1.5e-6
pitch_ratio = 0.37

View File

@@ -2,8 +2,9 @@ import unittest
from copy import deepcopy
import scgenerator.initialize as init
import numpy as np
import toml
from scgenerator import utils
from scgenerator import defaults, utils, math
from scgenerator.errors import *
@@ -30,7 +31,7 @@ class TestParamSequence(unittest.TestCase):
for param_seq in self.iterconf(["almost_equal", "equal", "no_variations"]):
l = []
s = []
for vary_list, _ in param_seq.iterate_without_computing():
for vary_list, _ in utils.required_simulations(param_seq.config):
self.assertNotIn(vary_list, l)
self.assertNotIn(utils.format_variable_list(vary_list), s)
l.append(vary_list)
@@ -39,12 +40,12 @@ class TestParamSequence(unittest.TestCase):
def test_init_config_not_affected_by_iteration(self):
for param_seq in self.iterconf(["almost_equal", "equal", "no_variations"]):
config = deepcopy(param_seq.config)
for _ in param_seq.iterate_without_computing():
for _ in utils.required_simulations(param_seq.config):
self.assertEqual(config.items(), param_seq.config.items())
def test_no_variations_yields_only_num_and_id(self):
for param_seq in self.iterconf(["no_variations"]):
for vary_list, _ in param_seq.iterate_without_computing():
for vary_list, _ in utils.required_simulations(param_seq.config):
self.assertEqual(vary_list[1][0], "num")
self.assertEqual(vary_list[0][0], "id")
self.assertEqual(2, len(vary_list))
@@ -65,18 +66,18 @@ class TestInitializeMethods(unittest.TestCase):
with self.assertRaisesRegex(TypeError, "'parallel' is not a valid variable parameter"):
init._validate_types(conf("bad4"))
with self.assertRaisesRegex(TypeError, "Varying parameters should be specified in a list"):
with self.assertRaisesRegex(TypeError, "Variable parameters should be specified in a list"):
init._validate_types(conf("bad5"))
with self.assertRaisesRegex(
TypeError,
"value '0' of type <class 'int'> for key 'repeat' is not valid, must be a strictly positive integer",
"value '0' of type .*int.* for key 'repeat' is not valid, must be a strictly positive integer",
):
init._validate_types(conf("bad6"))
with self.assertRaisesRegex(
ValueError,
r"Varying parameters lists should contain at least 1 element",
r"Variable parameters lists should contain at least 1 element",
):
init._ensure_consistency(conf("bad7"))
@@ -92,7 +93,7 @@ class TestInitializeMethods(unittest.TestCase):
with self.assertRaisesRegex(
MissingParameterError,
r"1 of '\['peak_power', 'energy', 'width', 't0'\]' is required when 'soliton_num' is specified and no defaults have been set",
r"1 of '\['peak_power', 'mean_power', 'energy', 'width', 't0'\]' is required when 'soliton_num' is specified and no defaults have been set",
):
init._ensure_consistency(conf("bad2"))
@@ -156,14 +157,49 @@ class TestInitializeMethods(unittest.TestCase):
dict(
t_num=16384,
time_window=37e-12,
lower_wavelength_interp_limit=0,
upper_wavelength_interp_limit=1900e-9,
lower_wavelength_interp_limit=defaults.default_parameters[
"lower_wavelength_interp_limit"
],
upper_wavelength_interp_limit=defaults.default_parameters[
"upper_wavelength_interp_limit"
],
).items(),
init._ensure_consistency(conf("good6"))["simulation"].items(),
)
# def test_compute_init_parameters(self):
# conf = lambda s: load_conf("compute_init_parameters/" + s)
def test_setup_custom_field(self):
d = np.load("testing/configs/custom_field/init_field.npz")
t = d["time"]
field = d["field"]
conf = load_conf("custom_field/no_change")
conf = init._generate_sim_grid(conf)
result = init.setup_custom_field(conf)
self.assertAlmostEqual(conf["field_0"].real.max(), field.real.max(), 4)
self.assertTrue(result)
conf = load_conf("custom_field/peak_power")
conf = init._generate_sim_grid(conf)
result = init.setup_custom_field(conf)
self.assertAlmostEqual(math.abs2(conf["field_0"]).max(), 20000, 4)
self.assertTrue(result)
conf = load_conf("custom_field/mean_power")
conf = init._generate_sim_grid(conf)
result = init.setup_custom_field(conf)
self.assertAlmostEqual(np.trapz(math.abs2(conf["field_0"]), conf["t"]), 0.22 / 40e6, 4)
self.assertTrue(result)
conf = load_conf("custom_field/recover1")
conf = init._generate_sim_grid(conf)
result = init.setup_custom_field(conf)
self.assertAlmostEqual(math.abs2(conf["field_0"] - field).sum(), 0)
self.assertTrue(result)
conf = load_conf("custom_field/recover2")
conf = init._generate_sim_grid(conf)
result = init.setup_custom_field(conf)
self.assertAlmostEqual((math.abs2(conf["field_0"]) / 0.9 - math.abs2(field)).sum(), 0)
self.assertTrue(result)
if __name__ == "__main__":