Files
scgenerator/tests/Optica_PM2000D/test_Optica_PM2000D.py
2023-06-28 14:04:53 +02:00

71 lines
1.8 KiB
Python

"""
May 2023
Testing the new solver / operators structure
using parameters from the 2022 Optica paper
"""
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import interp1d
import scgenerator as sc
import scgenerator.math as math
import scgenerator.physics.units as units
import scgenerator.plotting as plot
import scgenerator.solver as sol
def main():
params = sc.Parameters(**sc.open_single_config("./tests/Optica_PM2000D/Optica_PM2000D.toml"))
# print(params.nonlinear_operator)
# print(params.compute("dispersion_op"))
# print(params.linear_operator)
# print(params.spec_0)
# print(params.compute("gamma_op"))
#
# plt.plot(params.w, params.linear_operator(0).imag)
# plt.show()
breakpoint()
res = sol.integrate(
params.spec_0, params.length, params.linear_operator, params.nonlinear_operator
)
new_z = np.linspace(0, params.length, 256)
specs2 = math.abs2(res.spectra)
specs2 = units.to_WL(specs2, params.l)
x = params.l
# x = units.THz.inv(w)
# new_x = np.linspace(100, 2200, 1024)
new_x = np.linspace(800e-9, 2000e-9, 1024)
solution = interp1d(res.z, specs2, axis=0)(new_z)
solution = interp1d(x, solution)(new_x)
solution = units.to_log2D(solution)
plt.imshow(
solution,
origin="lower",
aspect="auto",
extent=plot.get_extent(1e9 * new_x, new_z * 1e2),
vmin=-30,
)
plt.show()
fields = np.fft.irfft(res.spectra)
solution = math.abs2(fields)
solution = interp1d(res.z, solution, axis=0)(new_z)
solution.T[:] /= solution.max(axis=1)
plt.imshow(
solution,
origin="lower",
aspect="auto",
extent=plot.get_extent(params.t * 1e15, new_z * 1e2),
)
plt.show()
if __name__ == "__main__":
main()